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The Mechanism of Ethylene Loss from the Oxonium Ion CH3CH2+0=CHCH2CH3 
Richard D. Bowen” and Peter J. Derrick 
Department of Chemistry, University of Warwick, Coventry CV4 7AL, UK 

Ethylene expulsion from CH3CH2+0=CHCH2CH3 is shown by collision-induced dissociation and 2H-labelling 
experiments to involve specifically the 0-ethyl group. 

It has recently become clear that many reactions of isolated 
organic ions involve ion-neutral complexes (INCs) in which a 
partly formed ion and an associated neutral species are held 
together by a combination of ion-dipole and related long range 
forces. 1-3 Dissociations via INCs often compete with or even 
pre-empt alternative fragmentations that may be formulated 
in terms of ‘conventional’ intermediates or transition states 
linked by familiar steps ( e . g .  , 1,2-hydride shifts). 

The slow dissociations of the oxonium ion 
CH3CH2+0=CHCH2CH3, 1, which have not previously been 
subjected to detailed scrutiny, provide an illustration of this 
possibility. Elimination of ethylene is the dominant reaction of 
1, Table 1, accounting for ca. 98% of the total metastable ion 
current. Two distinct mechanisms may be advanced to explain 
this process, Scheme 1. First, consecutive 1,2-hydride shifts 
could lead from 1 to 3 via 2; o-cleavage of 3 would then afford 
CH3CH2+O=CH2, 4, and C2H4. This ‘conventional’ route for 
ethylene loss has been proposed to operate for 
CH3CH2CH=OH+, 5,43 and CH3CH2CH=O+CH3, 6.4 The 
behaviour of 2H-labelled analogues of 5 and 6 reveals that the 
four hydrogen or deuterium atoms in the eliminated ethylene 
are selected almost statistically from the six of the original 
C3H6-nDn moiety, with minor5 and negligible6 participation, 
respectively, from the O H  and OCH3 hydrogens. This is 
consistent with extensive hydrogen exchange, via 1,2-H-shifts, 
prior to decomposition of 5 and 6. The second route for C2H4 
loss from 1 involves stretching of the C-0 o-bond to form the 
INC la; hydrogen transfer between the developing products 

(CH3CH2+ and CH3CH2CH=O) then yields CH2=CH2 and 
CH3CH2CH=OH+. Many onium ions containing the 
=Z+-CH2CH3 moiety ( Z  = 0, NH, NCH3) apparently expel 
C2H4 in this way.1 

The isomeric daughter ions 4 and 5 produced by the two 
alternative routes for C2H4 loss from 1 may be distinguished 
by investigating their collision-induced dissociation (CID) 
spectra. It is evident from the relevant partial CID spectra, 
Table 2, that C2H4 elimination from 1 yields 5 ,  rather than 4. 

Table 1 Reactions of metastable CH3CH2+O=CHCH2CH3 ions 

Neutral Relative Kinetic energy 
species lost abundancea release Tib 

H20 <1 2.1 
C2H4 > 98 1.9 
C3H6 1 1.6 

* Values measured by ion counts, corresponding to metastable peak 
areas, and normalised to a total metastable ion current of 100 units for 
ions dissociating in the second field-free region of a research mass 
spectrometer (‘MMM’) of very large dimensions equipped with a post 
acceleration detector (P. G. Cullis, G. M. Neumann, D.  E. Rogers 
and P. J. Derrick, Adv. Muss Spectrorn., 1980,8, 1729). Values (in 
kJ mol-1) measured from the width-at-half-height of the appropriate 
metastable peak after applying the usual correction for the width of 
the main beam. 
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Table 2 Partial collision induced dissociation spectra of C3H70+ ions" 

Ion structure and origin 

CH3CH2+ O=CH2b C2H4 loss from CH3CH2+O=CHCH2CH3 

mlz RId RId RId 

57 
55 
43 
39 
38 
37 
29 
27 
26 
15 

14.1 
1 .o 
8.7 

10.5 
3.7 
2.6 

48.5 
16.8 
7.0 

100 

52.5 
6.5 

29.9 
41.5 
13.4 
11.4 

68.5 
33.3 
16.8 

100 

63.3 
7.6 

31 .O 
45.9 
14.6 
10.8 

68.4 
30.2 
18.4 

100 

a Helium collision gas; 60% attenuation of initial C3H70+ ion signal. Generated by ionisation and CH3 loss from 
(C2H5)20. Normalised to a value of 100 units for the most 
intensepeakcontainingnounimolecular component. 

Generated by ionisation and CzH5' loss from (C2H&CHOH. 

Table 3 Reactions of metastable C3H4D30+ ions 
~ ~~ 

H20 HOD D2O C2H4 C2H3D C2H2D2 C2HD3 
Ion structure and 
origin RA" T&b RA" Tib RA" Tib RA" Tib  RA" Tib RA" T*b RA" T4b 

CH3CD&D=OH+ 
from 

3.3 2.2 0.3 1.0 3.1 1.1 4.8 1.3 1.2 1.6 (CH3CD&CDOH 53.1 2.1 34.3 2.1 

C3H4D30+ from 
CH3CD2CD=O+C2HS 52.0 2.1 33.0 2.1 2.9 2.1 0.3 1.1 3.7 1.3 6.4 1.7 1.7 2.1 

a,b  See footnotes a and b to Table 1. 

1 2 3 

CH2=CH2 + CH,=O+CH2CH3 

4 

I CH3CH2CH=OH+ 

Scheme 1 

This deduction is confirmed by 2H-labelling experiments. 
Thus, metastable CH3CH2+0=CDCD2CH3 undergoes C2H4 
loss (T4 = 1.8 kJ mol-1) with very high specificity (>99%). 
This is consistent with expulsion of ethylene from the 0-ethyl 
group of 1. In contrast, ethylene loss from the C3H3D3 entity 
of CH3CH2+0=CDCD2CH3 would result in elimination of 
C2H3D, C2H2D2 and C2HD3, but not the observed C2H4. 
Even at higher internal energies (source reactions), 
CH3CH2+0=CDCD*CH3 eliminates C2H4 with at least 80% 
specificity. Moreover, the fragmentation of metastable 
C3H4D30+ ions formed by C2H4 loss from 
CH3CH2+0=CDCD2CH3 is almost identical to that of 
CH3CD2CD=OH+ ions generated directly from 

(CH3CD2)2CDOH, Table 3. This close similarity is further 
evidence that C2H4 elimination from 
CH3CH2+0=CDCD2CH3 yields CH3CD2CD=OH+, as 
opposed to a trideuteriated analogue of CH3CH2+O=CH2. 
The somewhat increased overall abundance of the higher 
energy reaction, ethylene loss, in the dissociation of 
C3H4D30+ ions produced by fragmentation of 
CH3CH2+ O=CDCD2CH3 may indicate that these ions have a 
slightly higher average internal energy than the 
CH3CD2CD=OH+ ions generated directly from 
(CH3CD2)2CDOH.7 This hypothesis would also account for 
the larger T4 values associated with expulsion of deuteriated 
ethylenes from C3HdD30+ ions formed from 
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E / kJ mol-’ T 

Fig. 1 Potential energy profile for isomerisation and dissociation of 1 

CH3CH2+0=CDCD2CH3.8 The same trend (greater Ti values 
for loss of more heavily deuteriated ethylenes) is found for 
both classes of C3H4D30+ ions. 

The chemistry of 1 is conveniently summarised by the 
potential energy profile9 (PEP) of Fig. 1. This PEP is 
constructed using knownlo-14 or estimatedlJ5-18 enthalpies of 
formation. The final hydrogen transfer step, la  -+ products, 
may involve the proton-bound complex (PBC) lb.  However, 
the lowest-energy geometry of l b  is possibly better represen- 
ted by the INC l c  in which the common proton is more closely 
associated with the oxygen atom of the propionaldehyde. 

Notwithstanding the uncertainty concerning the precise 
geometry of the species la ,  lb ,  and/or l c  involved in C2H4 loss 
from 1, it is evident that this route is energetically much more 
favourable than the alternative ‘conventional’ mechanism (1 
-+ 2 -+ 3 -+ products). The contrast between the behaviour of 
1 and that of the lower homologue, 6, which contains only an 
O-methyl group is striking. This reflects the ease of dissocia- 
tion of 1 via the new channel for C2H4 loss involving INCs; no 
such route is open to 6. 
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