The Mechanism of Ethylene Loss from the Oxonium Ion CH₃CH₂+O=CHCH₂CH₃

Richard D. Bowen* and Peter J. Derrick

Department of Chemistry, University of Warwick, Coventry CV4 7AL, UK

Ethylene expulsion from $CH_3CH_2+O=CHCH_2CH_3$ is shown by collision-induced dissociation and ²H-labelling experiments to involve specifically the O-ethyl group.

It has recently become clear that many reactions of isolated organic ions involve ion-neutral complexes (INCs) in which a partly formed ion and an associated neutral species are held together by a combination of ion-dipole and related long range forces.¹⁻³ Dissociations *via* INCs often compete with or even pre-empt alternative fragmentations that may be formulated in terms of 'conventional' intermediates or transition states linked by familiar steps (*e.g.*, 1,2-hydride shifts).

slow dissociations of the The oxonium ion CH₃CH₂+O=CHCH₂CH₃, 1, which have not previously been subjected to detailed scrutiny, provide an illustration of this possibility. Elimination of ethylene is the dominant reaction of 1, Table 1, accounting for ca. 98% of the total metastable ion current. Two distinct mechanisms may be advanced to explain this process, Scheme 1. First, consecutive 1,2-hydride shifts could lead from 1 to 3 via 2; o-cleavage of 3 would then afford $CH_3CH_2^+O=CH_2$, 4, and C_2H_4 . This 'conventional' route for ethylene loss has been proposed to operate for $CH_3CH_2CH=OH^+$, 5,4.5 and $CH_3CH_2CH=O^+CH_3$, 6.4 The behaviour of ²H-labelled analogues of 5 and 6 reveals that the four hydrogen or deuterium atoms in the eliminated ethylene are selected almost statistically from the six of the original $C_3H_{6-n}D_n$ moiety, with minor⁵ and negligible⁶ participation, respectively, from the OH and OCH₃ hydrogens. This is consistent with extensive hydrogen exchange, via 1,2-H-shifts, prior to decomposition of 5 and 6. The second route for C_2H_4 loss from 1 involves stretching of the C-O σ -bond to form the INC 1a; hydrogen transfer between the developing products

(CH₃CH₂⁺ and CH₃CH₂CH=O) then yields CH₂=CH₂ and CH₃CH₂CH=OH⁺. Many onium ions containing the =Z⁺-CH₂CH₃ moiety (Z = O, NH, NCH₃) apparently expel $C_{2}H_{4}$ in this way.¹

The isomeric daughter ions 4 and 5 produced by the two alternative routes for C_2H_4 loss from 1 may be distinguished by investigating their collision-induced dissociation (CID) spectra. It is evident from the relevant partial CID spectra, Table 2, that C_2H_4 elimination from 1 yields 5, rather than 4.

Table 1 Reactions of metastable CH₃CH₂+O=CHCH₂CH₃ ions

· · · · · · · · ·	Neutral species lost	Relative abundance ^a	Kinetic energy release $T_{\frac{1}{2}}^{b}$	
	$\begin{array}{c} H_2O\\ C_2H_4\\ C_3H_6 \end{array}$	<1 >98 1	2.1 1.9 1.6	

^{*a*} Values measured by ion counts, corresponding to metastable peak areas, and normalised to a total metastable ion current of 100 units for ions dissociating in the second field-free region of a research mass spectrometer ('MMM') of very large dimensions equipped with a post acceleration detector (P. G. Cullis, G. M. Neumann, D. E. Rogers and P. J. Derrick, *Adv. Mass Spectrom.*, 1980, **8**, 1729). ^{*b*} Values (in kJ mol⁻¹) measured from the width-at-half-height of the appropriate metastable peak after applying the usual correction for the width of the main beam.

m/z	Ion structure and origin									
	CH ₃ CH ₂ +O=CH ₂ ^b	C ₂ H ₄ loss from CH ₃ CH ₂ +O=CHCH ₂ CH ₃	CH ₃ CH ₂ CH=OH ⁺ ^c Rl ^d							
	RI ^d	RI ^d								
57	14.1	52.5	63.3							
55	1.0	6.5	7.6							
43	8.7	29.9	31.0							
39	10.5	41.5	45.9							
38	3.7	13.4	14.6							
37	2.6	11.4	10.8							
29	100	100	100							
27	48.5	68.5	68.4							
26	16.8	33.3	30.2							
15	7.0	16.8	18.4							

Table 2 Partial collision induced dissociation spectra of C₃H₇O⁺ ions^a

^{*a*} Helium collision gas; 60% attenuation of initial $C_3H_7O^+$ ion signal. ^{*b*} Generated by ionisation and CH_3 loss from $(C_2H_5)_2O$. ^{*c*} Generated by ionisation and C_2H_5 loss from $(C_2H_5)_2CHOH$. ^{*d*} Normalised to a value of 100 units for the most intense peak containing no unimolecular component.

Table 3 Reactions of metastable C₃H₄D₃O⁺ ions

T	H ₂ O		HOD		D ₂ O		C ₂ H ₄		C ₂ H ₃ D		$C_2H_2D_2$		C ₂ HD ₃	
origin	RA ^a	$T_{\frac{1}{2}}^{b}$	RA ^a	$T_{\frac{1}{2}}^{b}$	RA ^a	$T_{\frac{1}{2}}^{b}$	RA ^a	$T_{\frac{1}{2}}^{b}$	RAa	$T_{\frac{1}{2}}^{b}$	RA ^a	$T_{\frac{1}{2}}^{b}$	RA^{a}	$T_{\frac{1}{2}b}$
CH ₃ CD ₂ CD=OH ⁺ from (CH ₃ CD ₂) ₂ CDOH	53.1	2.1	34.3	2.1	3.3	2.2	0.3	1.0	3.1	1.1	4.8	1.3	1.2	1.6
$C_3H_4D_3O^+$ from $CH_3CD_2CD=O^+C_2H_3CD_3CD_3CD_3CD_3CD_3CD=O^+C_2H_3CD_3CD_3CD_3CD_3CD_3CD_3CD_3CD_3CD_3CD$	5 52.0	2.1	33.0	2.1	2.9	2.1	0.3	1.1	3.7	1.3	6.4	1.7	1.7	2.1

 a,b See footnotes a and b to Table 1.

This deduction is confirmed by ²H-labelling experiments. Thus, metastable CH₃CH₂+O=CDCD₂CH₃ undergoes C₂H₄ loss ($T_{\frac{1}{2}} = 1.8 \text{ kJ mol}^{-1}$) with very high specificity (>99%). This is consistent with expulsion of ethylene from the O-ethyl group of 1. In contrast, ethylene loss from the $C_3H_3D_3$ entity of CH₃CH₂+O=CDCD₂CH₃ would result in elimination of C_2H_3D , $C_2H_2D_2$ and C_2HD_3 , but not the observed C_2H_4 . Even at higher internal energies (source reactions), $CH_3CH_2+O=CDCD_2CH_3$ eliminates C_2H_4 with at least 80% specificity. Moreover, the fragmentation of metastable $C_3H_4D_3O^+$ ions formed by C_2H_4 loss from CH₃CH₂+O=CDCD₂CH₃ is almost identical to that of $CH_3CD_2CD=OH^+$ ions generated directly from

(CH₃CD₂)₂CDOH, Table 3. This close similarity is further evidence that C_2H_4 elimination from CH₃CH₂+O=CDCD₂CH₃ yields CH₃CD₂CD=OH⁺, as opposed to a trideuteriated analogue of CH₃CH₂+O=CH₂. The somewhat increased overall abundance of the higher energy reaction, ethylene loss, in the dissociation of $C_3H_4D_3O^+$ ions produced by fragmentation of CH₃CH₂+O=CDCD₂CH₃ may indicate that these ions have a slightly higher average internal energy than the $CH_3CD_2CD=OH^+$ ions generated directly from (CH₃CD₂)₂CDOH.⁷ This hypothesis would also account for the larger $T_{\frac{1}{2}}$ values associated with expulsion of deuteriated ethylenes from $C_3H_4D_3O^+$ ions formed from

Fig. 1 Potential energy profile for isomerisation and dissociation of 1

CH₃CH₂+O=CDCD₂CH₃.⁸ The same trend (greater $T_{\frac{1}{2}}$ values for loss of more heavily deuteriated ethylenes) is found for both classes of C₃H₄D₃O⁺ ions.

The chemistry of **1** is conveniently summarised by the potential energy profile⁹ (PEP) of Fig. 1. This PEP is constructed using known¹⁰⁻¹⁴ or estimated^{1,15-18} enthalpies of formation. The final hydrogen transfer step, **1a** \rightarrow products, may involve the proton-bound complex (PBC) **1b**. However, the lowest-energy geometry of **1b** is possibly better represented by the INC **1c** in which the common proton is more closely associated with the oxygen atom of the propionaldehyde.

Notwithstanding the uncertainty concerning the precise geometry of the species 1a, 1b, and/or 1c involved in C_2H_4 loss from 1, it is evident that this route is energetically much more favourable than the alternative 'conventional' mechanism (1 $\rightarrow 2 \rightarrow 3 \rightarrow$ products). The contrast between the behaviour of 1 and that of the lower homologue, 6, which contains only an O-methyl group is striking. This reflects the ease of dissociation of 1 via the new channel for C_2H_4 loss involving INCs; no such route is open to 6. We thank the SERC for financial support, including the award of an Advanced Fellowship to R. D. B.

Received, 9th April 1990; Com. 0/01595D

References

- For early work on INCs in oxonium ion systems, see: R. D. Bowen, B. J. Stapleton and D. H. Williams, J. Chem. Soc., Chem. Commun., 1978, 24; R. D. Bowen and D. H. Williams, Int. J. Mass Spectrom. Ion Phys., 1979, 29, 47; J. Am. Chem. Soc., 1978, 100, 7454; 1980, 102, 2752.
- 2 For reviews, see: T. H. Morton, Tetrahedron, 1982, 38, 3195; D. J. McAdoo, Mass Spectrom. Rev., 1988, 7, 363.
- 3 S. Hammerum, J. Chem. Soc., Chem. Commun., 1988, 858; S. Hammerum and H. E. Audier, 1988, 860.
- 4 D. H. Williams and R. D. Bowen, J. Am. Chem. Soc., 1977, 99, 3192; R. D. Bowen and D. H. Williams, 1977, 99, 6822.
- 5 R. D. Bowen, D. H. Williams, G. Hvistendahl and J. R. Kalman, Org. Mass Spectrom., 1978, 13, 721.
- 6 T. J. Mead and D. H. Williams, J. Chem. Soc., Perkin Trans. 2, 1972, 876.
- 7 H. M. Rosenstock, V. H. Dibeler and F. N. Harllee, J. Chem. Phys., 1964, 40, 591.
- 8 R. G. Cooks, J. H. Beynon, R. M. Caprioli and G. R. Lester, *Metastable Ions*, Elsevier, Amsterdam, 1973.
- 9 For reviews on PEPs, see: D. H. Williams, Acc. Chem. Res., 1977, 10, 280; Philos. Trans. R. Soc. London, Ser. A, 1979, 293, 117; R. D. Bowen, D. H. Williams and H. Schwarz, Angew. Chem., Int. Ed. Engl., 1979, 18, 451; R. D. Bowen and D. H. Williams, in Rearrangements in Ground and Excited States, ed. P. DeMayo, Academic Press, New York, 1980, vol. 1, ch. 2.
- 10 F. P. Lossing and A. Maccoll, Can. J. Chem., 1976, 54, 990; F. P. Lossing, J. Am. Chem. Soc., 1977, 99, 7526.
- 11 H. M. Rosenstock, K. Draxl, B. W. Steiner and J. T. Herron, J. Phys. Chem., Ref. Data, Suppl. 1, 1977, 6.
- 12 J. C. Traeger and R. G. McLoughlin, J. Am. Chem. Soc., 1981, 103, 3647.
- 13 S. G. Lias, J. F. Liebman and R. D. Levin, J. Phys. Chem., Ref. Data, 1984, 13, 695.
- 14 J. B. Pedley, R. D. Nayler and S. P. Kirby, *Thermochemical Data of Organic Compounds*, 2nd edn., Chapman and Hall, London, 1986.
- 15 J. L. Franklin, Ind. Eng. Chem., 1949, 41, 1070; J. Chem. Phys., 1953, 21, 2029.
- 16 S. W. Benson, *Thermochemical Kinetics*, 2nd edn., Wiley, New York, 1976.
- 17 L. Radom, J. A. Pople and P. v. R. Schleyer, J. Am. Chem. Soc., 1972, 94, 5935.
- 18 J. L. Holmes, M. Fingas and F. P. Lossing, *Can. J. Chem.*, 1981, 59, 80; F. P. Lossing and J. L. Holmes, *J. Am. Chem. Soc.*, 1984, 106, 6917.